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Data assimilation of local model error forecasts in
a deterministic model
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SUMMARY

One of the most popular data assimilation techniques in use today are of the Kalman �lter type, which
provide an improved estimate of the state of a system up to the current time level, based on actual
measurements. From a forecasting viewpoint, this corresponds to an updating of the initial conditions.
The standard forecasting procedure is to then run the model uncorrected into the future, driven by
predicted boundary and forcing conditions. The problem with this methodology is that the updated
initial conditions quickly ‘wash-out’, thus, after a certain forecast horizon the model predictions are no
better than from an initially uncorrected model. This study demonstrates that through the assimilation
of error forecasts (in the present case made using so-called local models) entire model domains can be
corrected for extended forecast horizons (i.e. long after updated initial conditions have become washed-
out), thus demonstrating signi�cant improvements over the conventional methodology. Some alternate
uses of local models are also explored for the re-distribution of error forecasts over the entire model
domain, which are then compared with more conventional Kalman �lter type schemes. Copyright ?
2002 John Wiley & Sons, Ltd.
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1. INTRODUCTION

One of the most popular data assimilation techniques in use today are of the Kalman �lter type,
which provide an improved estimate of the state of a system up to the current time level, based
on actual measurements. In terms of forecasting, this corresponds to an updating of the initial
conditions. Forecasts are typically obtained by then simulating the model uncorrected into the
future, driven by predicted boundary and forcing terms. These future states are typically not
corrected, as no measurements are as yet available at these time levels. The problem with
this methodology is that the updated initial conditions quickly ‘wash-out’, thus, after a certain
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forecast horizon the model results are essentially no better than if they had been made using
an initially uncorrected model.
It is, of course, impossible to obtain actual measurements of a model state for future

time levels. It is, however, possible to forecast these measurements, either in terms of state
variables or model errors. Such forecasts can then be assimilated into the model, thus providing
improved estimates of a system state at future time levels. This methodology potentially allows
for the correction of model states for extended forecast horizons (i.e. far beyond the time it
takes for updated initial conditions to become washed-out).
This paper gives a brief overview of time series forecasting with local models, including a

novel approach for their optimization using genetic algorithms (GAs). The approach is then
applied in the forecasting of errors in a deterministic model in a hypothetical bay, where errors
are introduced arti�cially in the resistance, boundary, and wind-forcing terms. Subsequent
local model assimilation methods are applied to re-distribute the errors over the entire model
domain, and their performance is compared with some more conventional Kalman �ltering
approaches.

2. TIME SERIES FORCASTING WITH LOCAL MODELS

2.1. Local modelling

A rather e�ective method of simulating the evolution of a dynamical system is by means of a
local approximation, using only the most similar trajectories from the past to make predictions
of the future [1]. Such local models (LMs) have already been used successfully in numerous
previous studies. These include error correction in deterministic models [2; 3], the forecasting
of river discharges [4; 5], as well for control purposes [6].
Local models are particularly well suited for time series forecasting since they share many

fundamental ideals with Takens time-delay embedding theorem [7]. This theorem essentially
states that the underlying structure of a complex, multidimensional system can be equivalently
viewed using a projection from a single variable (in the form of a time series) in phase space
(i.e. an embedded space with dimensions consisting of various time lags of the variable itself).
Time series can correspondingly be forecast based on this structure in their phase space. Time
series forecasting with local models consists of three main steps: (1) embedding of the time
series data into phase space; (2) �nding the k most similar points in phase space (i.e. a local
neighbourhood) to a query point; and (3) performing a regression on the local neighbourhood
(using the neighbourhood co-ordinates as inputs, and their corresponding future values as
outputs) to obtain a forecast.
The local regression performed in step (3) is typically of degree zero or one (i.e. averaging

or linear), although this can theoretically be of any polynomial degree. Although the local
approximation may not be, the resulting overall behaviour can be highly non-linear, as a local
approximation is made separately for each neighbourhood.

2.2. Selection of embedding parameters

As previously mentioned the �rst step in making a LM forecast is to embed the time series
into a phase space. This typically involves the selection of a time lag, �, and an embedding
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dimension, de, so that a variable, y, can be represented in phase space as

yn=[yn; yn−�; yn−2�; : : : ; yn−(de−1)�] (1)

where n is a time level. Methods for selecting prescription values for the necessary param-
eters using average mutual information (AMI) and false nearest neighbour (FNN) analyses
are typically recommended in the literature (see e.g. Reference [8]), however, these have
been shown to generally be sub-optimal selections (see e.g. References [1; 9]). Therefore an
alternate strategy using genetic algorithms is employed throughout this work, which has been
shown to demonstrate signi�cant improvements over the prescription values.

2.3. Genetic algorithms

Genetic algorithms [10] are general purpose search algorithms based loosely on the principals
of Darwinian evolution. By means of a simulated evolution GAs can be used to optimize
highly non-linear, multidimensional problems (see e.g. Reference [11]). For details on the
GA used in this study see Reference [12].

2.4. Evolutionary embedding

The bottom line for the performance of an embedding and subsequent local modelling is
the resulting forecast skill, as good forecast skill implies good embedding properties [1].
Therefore, in an attempt to obtain a more optimal embedding a GA was implemented around
the existing local modelling code. Essentially what is left is a global optimization problem
with the input parameters consisting of the number of nearest neighbours, k; the selection
of a weighting function, w; and the components in the embedding vector, �. The number of
k nearest neighbours used in this study was held globally constant, though more complex
methods of neighbourhood selection could be used (see e.g. Reference [13]). The selection
of a weighting function (for purposes of a weighted regression) consisted of nine possibilities
(from Reference [14]): i.e. uniform, 1 − d, 1=d, 1=d2, 1=(d+ 1), e−d ∗ d, e−d, (1 − d2)2, and
(1− d3)3, where the distances, d, from a query point are normalized between zero and one.
In the most general terms the embedding vector can be expressed as

�=[�0; �1; �2; : : : ; �de−1] (2)

Accordingly, (1) then becomes:

yn=[yn−�0 ; yn−�1 ; yn−�2 ; : : : ; yn−�de−1 ] (3)

Typically �0 is set equal to zero, however the general notation will be maintained here. These
parameters can then be optimized by minimizing some error statistic for the testing data.
Within the GA, rather than optimizing the components in the embedding vector, �, directly,

an approach using changes in time delay, ��, as parameters has been adopted:

��=[��1;��2; : : : ;��de−1] (4)

The resulting time delay vectors can then be constructed by progressively summing the
preceding values. Hence (2) becomes

�=[�0; �0 + ��1; �0 + ��1 + ��2; : : : ; �0 + ��1 + ��2 + · · ·+��de−1] (5)

Copyright ? 2002 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2002; 39:887–918



890 V. BABOVIC AND D. R. FUHRMAN

Finally, only unique values in the � vector are used. For example, if the GA produced an
o�spring for �� containing the values [0 4 3 5 0 2], a progressive summation of the values yields
the vector [0 4 7 12 12 14]. Finally, taking only the unique values yields the actual � vector that
would be used in the simulation: [0 4 7 12 14]. Constructing the time delay embedding vectors
in this fashion allows for simultaneous variations in the delay values themselves, as well as
in the e�ective embedding dimension, while keeping the number of optimization parameters
constant. Furthermore, the range for the GA variables can be set much lower than if the time
lags were evolved directly, thus signi�cantly reducing the search space.

3. HYDRODYNAMIC MODEL

The deterministic model used in this study is the MIKE 21 HD (hydrodynamic) modelling
system from DHI—Water & Environment, Horsholm, Denmark. Because this hydrodynamic
model has been described in the literature numerous times a detailed description will not be
provided here. For more speci�c details the reader is referred to References [15; 16].

4. DATA ASSIMILATION METHODS

The numerical model is, of course, far from perfect. A numerical model is indeed only a
model of reality; i.e. it employs a number of simplifying assumptions, e.g. depth averaging
of velocities in vertically integrated two-dimensional models, which inevitably produce inac-
curacies. In a numerical model one also discretizes the domain, and is therefore not able to
resolve numerous sub-grid scale phenomena. Errors in the model parameterization (mainly
because most model parameters cannot be directly measured) may also greatly contribute to
the overall error in a numerical model. Finally, it is impossible to precisely de�ne initial
conditions and forcing terms in the entire computational domain. All of these imprecisions
and uncertainties can accumulate to produce fairly poor model results, despite our ‘perfect’
knowledge of the governing laws [17]. To combat the inevitable presence of such model
errors methods for correcting the model results are often employed. Data assimilation is a
methodology that utilizes information from observations, and combines it with (or assimilate
it into) numerical models [18]. For an overview of various data assimilation strategies see
References [19; 20].
If forecasting interest is for a considerably long forecast lead-time, a data assimilation

scheme based on updating of output variables (i.e. error prediction) may be the most suitable
approach. This cannot be done in conventional data assimilation methods (i.e. Kalman �lter-
ing), where the data must be introduced in the model state in order to be assimilated. The
following sections brie�y introduce conventional Kalman �ltering, as well as some alternate
approaches for error prediction and subsequent assimilation using local models.

4.1. Kalman �ltering

A standard data assimilation procedure, which uses an updating of the model state vari-
ables, is the Kalman �lter [21]. Applications of this procedure are abundant in the literature
[18; 22–26], and the reader is referred to these references for further details on the method.
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Table I. Summary of the di�erent Kalman �lter algorithms included in the MIKE 21 DA module
(adapted from Reference [27])∗.

EnKF RRSQRT KF SSKF

Error propagation Propagation of ensemble Propagation of error No error
according to full non-linear covariance matrix using propagation
model dynamics tangent linear model operator

Model error forcing Part of ensemble Matrix algebra No explicit model
propagation error forcing

Representation of error Ensemble estimate Reduced rank approximation Constant error
covariance matrix of square-root of covariance covariance

matrix
Storage requirements M×(N + q) (M +M)×(N + q) (N + q)
Computational costs M model integrations M model integrations and Slightly more

eigenvalue decompositions expensive than a
model integration

Main disadvantage Large sample required for Large rank of covariance Constant error
su�cient error matrix required to avoid �lter covariance
representation divergence assumed

∗M is the ensemble size in the EnKF and the rank of the covariance matrix (i.e. the number of leading
eigenvalues) in the RRSQRT KF, N is the number of state variables, and q is the number of noise points.

Various approximations for the error covariance propagation inherent within a KF exist that
signi�cantly reduce the computational burden. The three that are included in the MIKE 21
DA (data assimilation) module are: (1) the ensemble Kalman �lter (EnKF); (2) the reduced-
rank-square-root Kalman �lter (RRSQRT KF); and (3) the steady state Kalman �lter (SSKF).
A summary of these three variations is provided in Table I. As the emphasis of this pa-
per is not speci�cally on Kalman �ltering methods more detailed descriptions are not pro-
vided here. For more exact details on their implementation the interested reader is referred to
References [15; 27]. In the present work the EnKF and a corresponding SSKF will be used
for comparison with some alternate LM approaches described in the following sub-sections.

4.2. Local weighted spatial regression

The �rst LM technique is simply to redistribute measured and forecasted errors at the measure-
ment locations to the rest of the domain based on a weighted spatial regression performed
on a local neighbourhood of measurement points. For practical reasons (i.e. measurement
locations are usually sparsely distributed) the regression should probably be of degree zero
or one. This method can be used in essentially identical fashions to redistribute both error
measurements and forecasts, thus allowing corrections to be made at both current and future
time levels. The steps for each non-measurement grid point are simply to: (1) select a local
neighbourhood of measurement point locations, and (2) distribute the error measurements and
forecasts (for each successive time level) using a weighted spatial regression on the local
neighbourhood.
The inputs for the local model forecasts with this method could potentially include the

embedded values of the errors themselves, as well as the respective model outputs (i.e. water
levels and �uxes). In theory, these multiple variables could be taken not only from the actual
measurement location, but also from surrounding grid points. It has, however, been shown that
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the addition of input data from neighbouring grid points e�ectively increases the dimensionality
of the phase space without providing a corresponding increase in data point coverage [9] (since
the outputs from neighbouring grid points do not tend to vary signi�cantly). Therefore, the
inclusion of LM input data from surrounding grid points is not investigated in this work.
Such a local weighted spatial regression (LWSR) provides a very simple and e�cient

method for the distribution of errors throughout a model domain. To save computation time
the nearest neighbours in space and regression parameters need only be determined once and
then stored for reuse at all additional time levels. The computational burden is very similar
to that of the SSKF for each time level.

4.3. Weighted local model ensemble

The second methodology introduced in this work is to use a weighted local model ensemble
(WLME) to forecast errors at every non-measurement grid point. For this method local models
are again created using data from the measurement points. These local models are then re-
applied at the non-measurement grid points. Because a time series of errors is not available
outside of the measurement points, these local models must only use actual model results as
inputs. A weighted ensemble of the local model predictions (based on distance in space from
the query grid point) is then used to obtain error forecasts for non-measurement grid points.
In the manner applied throughout this work a forecast horizon of one time step corresponds to
an approximation of errors at the current time level (i.e. previous model outputs are used to
predict the current error). It then becomes trivial to extend the method to any forecast horizon,
thus also allowing for corrections at future time levels. The steps for each non-measurement
grid point, again, are to: (1) construct a local model using data from each measurement point;
(2) select a neighbourhood of nearest measurement point locations; (3) make predictions for
the current and extended time levels using each of the selected local models; and (4) combine
the predictions from the selected local models in a weighted ensemble fashion (i.e. predictions
made using local models based on data nearest to the non-measurement grid point are weighted
most heavily). The idea of applying local models constructed from data at measurement points
at the other grid points was taken from Reference [28], where the data from all measurement
points was combined into a single database. Based on a comparison in Reference [9], however,
the weighted ensemble approach presented here appears to be the better strategy.
This correction technique relies on the assumption that the dynamics throughout a model

domain are related, hence allowing a LM based on data from one location to be used at
another. A weighted ensemble of the forecasts is used since the underlying dynamics, though
related, would also be expected to contain some spatial diversity. This method is more com-
putationally expensive than a LWSR, largely because searching for nearest neighbours in
phase space is necessary at every grid point. Such searching typically requires O(k logN )
comparisons, where N is the number of training data [4].
It should also be noted that because the error measures themselves are not embedded as local

model inputs, the error predictions (even for the current time step) are made with no assumed
knowledge of the most recent measurements. This could be interpreted either as an advantage
or a disadvantage, depending on the viewpoint. If successful the error prediction scheme can
be applied without using any complicated real-time sensing (requiring only a database of
previous model results and measured errors). On the other hand, not directly incorporating
the most recent measurements seems to put the method at an inherent disadvantage.
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4.4. Hybrid method: KF assimilation of LM forecasts

The �nal methodology presented in this work is a sort of hybrid approach, combining both
local models and Kalman �ltering. It involves making a LM forecast of the errors at the
measurement points, and then assimilating these forecasts into the model using a Kalman
�lter. In this study the SSKF is employed for this purpose (which, again, uses a constant
gain matrix), although any KF variety could be used. In order to apply this technique the
uncorrected model must �rst be simulated into the future to gain a time series of model outputs
for each measurement location. The forecasted errors at these points can then be added to
these model outputs to obtain forecasted state variables (since KF is a state variable updating
procedure). The Kalman �lter can then be applied in the standard fashion to assimilate these
forecasted state variables. This extra step could be avoided by directly forecasting the state
variables, however this was not done in this paper. This hybrid technique is perhaps the most
fundamentally sound of the methods presented here, as it combines the well-documented
time series forecasting skill of local models with the assimilation capabilities of Kalman
�ltering.

5. HYPOTHETICAL BAY DESCRIPTION

In order to test the methods described in the previous section a model of a hypothetical bay
was constructed using the MIKE 21 software (a similar case study is used in References
[15; 28]). A description of the ‘true’ (i.e. before errors are introduced) hypothetical bay is
provided in this section. The bay consists of a rectangular 21×20 grid using a spacing of
10 km in both the x- and y-directions. The model bathymetry is shown in Figure 1, having
depths ranging from zero along the shore to −100 m at its deepest locations in the middle.
The Chezy bed resistance coe�cient, C, varies with the depth, having values in the range 30–
45m1=2 s−1, with the largest values in the deepest areas. The bay has an open northern bound-
ary and closed eastern, western, and southern boundaries. In previous studies (i.e. References
[15; 28]) the model was driven by a simple sine wave having a period of 12 h and a range
of 2m. The �ow in the present study, however, is forced by a multiperiodic sinusoidal water
variation at the open boundary with periods of 12 h (representing tides) and 72 h (loosely
representing some varying tidal cycle). Meteorological forcing is included using wind and
pressure �elds from an arti�cially generated moving cyclone (see Figure 2 in Reference [15])
that moves in a west–east direction with a speed of 8:33 km h−1. The main �ow describes a
Kelvin wave moving counter-clockwise in the bay region. The entire model simulation is for
288 h (12 d) and uses a time step, �t, of 15 min, for a total of 1152 time steps. Throughout
the tests described in this paper time steps 101 through 800 were used for training (where
applicable), and 801 through 1152 for testing, with only the testing results reported through-
out. The �rst 100 time steps were not used to ensure that the initial conditions were properly
washed-out.
In Reference [28] nine measurement points were selected along the diagonals of the bay.

Typically, however, water surface elevation measurements are available only close to the
shore. Therefore, a more realistic con�guration of measurement points has been adapted as
in Reference [15] for the present study. This con�guration consists of three measurement
locations at grid points (1,16), (8,1), and (20,12), which are also shown in Figure 1.

Copyright ? 2002 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2002; 39:887–918



894 V. BABOVIC AND D. R. FUHRMAN

0 2 4 6 8 10 12 14 16 18 20
0

2

4

6

8

10

12

14

16

18

20

x

y

0
0

0

0 0 0

0
0

-10
-10

-1
0

-10 -10

-1
0

-1
0

-1
0

-20
-20

-20 -20 -2
0

-2
0

-2
0

-3
0

-30

-30 -30 -30

-3
0

-3
0

-40
-40

-40 -40

-4
0

-4
0

-50
-50

-50 -5
0

-5
0

-60
-60

-60

-6
0

-6
0

-70

-70

-7
0

-7
0

-80
-80

-8
0

-8
0

-90

-9
0

-9
0-1

00

-100

-1
00

A

C

B

Figure 1. Bathymetry of the hypothetical bay (depths in m). The grid spacing
in the x- and y-directions is 10 km.

Figure 2. Spatial distribution of RMS error for the uncorrected MIKE 21 model with resistance error.
The average value of this surface is 0:1788 m.
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6. INTRODUCTION OF ERRORS

To test the performance of the correction schemes developed in Section 4 resistance, boundary,
and wind-forcing errors were introduced into the ‘true’ model. The following sub-sections
describe the e�ects of these errors when introduced individually, as well as in combination.

6.1. Resistance error

The �rst errors introduced to the hypothetical bay were through the resistance coe�cients.
These are a common source of error in hydrodynamic models, as the actual roughness coe�-
cients cannot directly be measured from a system and are instead generally used as calibration
parameters. Furthermore, the resistance formulae common in hydraulics (i.e. the Manning or
Chezy equations) are empirical in nature, and therefore do not describe the e�ects of friction
correctly in any theoretical sense. To investigate the e�ects and predictability of resistance
error the Chezy resistance coe�cients in the ‘true’ model were changed to a global value of
32 m1=2 s−1. This new model was then re-simulated holding all other parameters constant as
in the ‘true’ model. Throughout this work the root-mean-squared error (RMSE) statistic will
be used as a �tness measure, de�ned as

RMSE=

√
1
N

N∑
i=1
(yi − ŷi)2 (6)

where N is the length of the time series; yi are the observed values; and ŷi are the estimates.
The resulting spatial distribution of RMS error for the uncorrected MIKE 21 simulation is
shown in Figure 2, having a spatially averaged value of 0:1788 m.
Here, because the open boundary condition is assumed to be a perfect representation of the

observed phenomenon, the error is essentially zero at the northern boundary. As the distance
from this boundary grows, however, the error becomes more pronounced (due to shoaling of
the tidal wave), with the highest errors occurring along the southern coast.

6.2. Boundary error

Next, a 1-h phase error was introduced separately into the boundary condition of the ‘true’
model (the resistance values were reset to their ‘true’ values). The resulting spatially dis-
tributed MIKE 21 RMS error without correction is shown in Figure 3, having a relatively
large spatially averaged value of 0:5254 m.
From the introduction of this boundary error there is now signi�cant error at the northern

end. As in the previous section, the introduced error grows as the distance increases from the
open boundary.

6.3. Wind-forcing error

The �nal error introduced into the model was in the wind-forcing. The moving cyclone was
replaced with a constant, spatially uniform wind blowing due east at 20m s−1. This is a fairly
drastic alteration, but it was thought that it would certainly provide ample errors for the testing
purposes here. The resulting spatial distribution of RMS error is shown in Figure 4 for the
uncorrected MIKE 21 model, having an average value of 0:2359 m.
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Figure 3. Spatial distribution of RMS error for the uncorrected MIKE 21 model with boundary error.
The average value of this surface is 0:5254 m.

Figure 4. Spatial distribution of RMS error for the uncorrected MIKE 21 model with wind-induced
error. The average value of this surface is 0:2359 m.
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Figure 5. Spatial distribution of RMS error for the uncorrected MIKE 21 model with combined error.
The average value of this surface is 0:6256 m.

Here it is seen that the errors are again somewhat ampli�ed as the distance increases from
the open boundary. More signi�cant, however, is the concentration of errors at both the eastern
and western boundaries, which lie directly perpendicular to the introduced wind.

6.4. Combined error

Finally, the three previously described error sources were combined into a single model. The
resulting spatial distribution of RMS error for the uncorrected MIKE 21 model is shown in
Figure 5, having an average value of 0:6256 m. Here, the individual components from the
various error sources are very apparent, as the combined error is clearly a composite of these
individual surfaces. This model provides the most realistic testing environment, as errors in
deterministic models are generally due to multiple factors. Therefore, although corrections
were made on all of the described models (see Reference [9] or alternatively Reference [29]
for complete details), the results correcting this combined error model will be given the most
attention in this paper.

7. ASSIMILATION AT CURRENT TIME LEVEL

As an initial testing atmosphere the error correction schemes described in Section 4 were
used to correct the errors at the current time levels. For the local weighted spatial regression
and Kalman �ltering techniques this corresponds to a re-distribution of actual measurements.
For the weighted local model ensemble scheme this corresponds, again, to a forecast horizon
of one time step. As previously noted, the results described here will concentrate on the

Copyright ? 2002 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2002; 39:887–918



898 V. BABOVIC AND D. R. FUHRMAN

Figure 6. Spatial distribution of RMS error after the correction of the combined error model (at current
time levels) using a local weighted spatial regression. The average value of this surface is 0:1356 m.

correction of the combined errors, however, a summary of all corrections (i.e. including the
individually introduced errors) is presented later in Table III.

7.1. Local weighted spatial regression of measurements

Firstly, results using a local weighted spatial regression (see Section 4.2) of the current
measurements to correct the combined error model are presented. An optimal con�guration
was found using a GA, which minimized the average RMS error at four grid points in the
model domain having locations (7,7), (7,14), (14,7), and (14,14). In reality this means that
measurements at these locations were assumed to be available, which e�ectively increases
the assumed number of measurement points from three to seven. However, it was decided
to take advantage of the current ‘data-rich’ situation, in the hope that the �ndings might be
generally applied to real modelling situations where enough data were not available for such
optimization. The optimal con�guration found consisted of a weighted spatial linear regression,
w=1=d2, of all three measurement points. The resulting spatial distribution of RMS error after
correction is shown in Figure 6, having an average error of 0:1356 m, which is substantially
lower than the uncorrected MIKE 21 error of 0:6256 m.
The time series of errors and corresponding water surface elevations for point (11,11) are

shown in Figure 7 for the testing duration. The uncorrected MIKE 21 simulation contains
both phase and amplitude errors, which are nearly eliminated using this approach, reducing
the uncorrected error at this point from 0.6277 to 0:1015 m.
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Figure 7. Time series of (a) observed and predicted errors, and (b) corresponding water levels at
point (11,11) in the combined error model for the correction at current time levels using a local
weighted spatial regression. The RMSE for this point after correction is 0:1015 m compared with

0:6277 m in the uncorrected MIKE 21 model.

7.2. Weighted local model ensemble

Secondly, the combined error model was corrected using a weighted local model ensemble
as described in Section 4.3. The parameters for the weighted local model ensemble were
optimized over the same four grid points, with the optimal con�gurations shown in Table II.
Throughout this work only zero-degree local approximations (i.e. averaging models) were
considered due to the relatively small number of training data. Also, the model results (which,
again, serve as LM inputs) were modi�ed slightly i.e. the water depths were converted to
water surface elevations, and �uxes were divided by the water depths to obtain a �ux per
unit depth. This was to ensure that the input values remain more or less constant for the
re-application of the LMs throughout the grid (for simplicity, however, their original notation
will be maintained). This con�guration was then applied over the entire system. Because
the measured errors were assumed to be known at the measurement locations these were
arti�cially set to zero for this simulation, however (as discussed previously) no knowledge
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Table II. Optimal results found with a genetic algorithm for the correction of the combined error
model (at current time levels) using a weighted local model ensemble.

Parameter Value Description

Include h 1 Do include
Include qx 0 Do not include
Include qy 0 Do not include
Surrounding cells [0 0 1 0 0] Include only centre-point (j; k)
Spatial weight dist. 5 w=e−d ∗ d

Spatial k 3 Use weighted ensemble prediction of all meas. points
�A [0 10 11 12 14] Time delay embedding for local model A
�B [0 13 28 39 54] Time delay embedding for local model B
�C [0 13 26 33 39 40] Time delay embedding for local model C
kA 19 No. of nearest neighbours in phase space for A
kB 11 No. of nearest neighbours in phase space for B
kC 23 No. of nearest neighbours in phase space for C
Phase space weight dist. 8 w=(1− d3)3

Figure 8. Spatial distribution of RMS error after the correction of the combined error model (at current
time levels) using a weighted local model ensemble. The average value of this surface is 0:2487 m.

of these most recent measurements is incorporated into the rest of the model. The resulting
spatial distribution of RMS error is shown in Figure 8, having an average error of 0:2487m.
The wind error, when introduced alone, produced a spatially averaged error of 0:2063 m
after correction, thus by far being the largest contributor (see Table III). This dominance
is even more apparent as signi�cant errors still exist along the western and eastern shores
after correction (compare with Figure 4). For the combined errors this approach performs
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Table III. Summary of spatially averaged errors. The lowest values obtained
for each error source are highlighted in bold.

Error RMSE (m)

MIKE 21 EnKF SSKF LWSR WLME

Resistance 0.1788 0.09030 0.03785 0.04044 0.05508
Boundary 0.5254 0.09992 0.06700 0.07540 0.1458
Wind 0.2359 0.09955 0.1289 0.1044 0.2063
Combined 0.6256 0.1616 0.1774 0.1356 0.2487
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Figure 9. Time series of (a) observed and predicted errors, and (b) corresponding water levels
at point (11,11) in the combined error model for the correction at current time levels using a
weighted local model ensemble. The RMSE for this point after correction is 0:1486 m compared with

0:6277 m in the uncorrected MIKE 21 model.

signi�cantly worse than the local weighted spatial regression of measurements seen in the
previous sub-section.
The time series of errors and corresponding water surface elevations are plotted for point

(11,11) in Figure 9. Once again there is a substantial improvement in both the phase and
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Figure 10. Spatial distribution of RMS error after the correction of the combined error model (at current
time levels) using an ensemble Kalman �lter. The average value of this surface is 0:1616 m.

amplitude errors evident in the uncorrected MIKE 21 simulation, though not as good as was
seen in Figure 7.

7.3. Kalman �ltering

For comparison the Kalman �ltering schemes were also employed. The following Kalman
�ltering parameters for the EnKF were calibrated manually for the correction of this com-
bined error model. The introduced boundary error was assumed to have a standard deviation
of 0:1 m, with both spatial and temporal (lag-one) autocorrelation coe�cients of 0.9. The
introduced wind errors were assumed to have a standard deviation of 1:0m s−1 with a spatial
autocorrelation coe�cient of 0.98 and a temporal autocorrelation coe�cient of 0.97. The mea-
surement errors were assumed to have a standard deviation of 0:10m. The correction scheme
did not seem to be very sensitive to any of the parameters, and they were therefore held
constant throughout this work. The EnKF simulations also used an ensemble size, M , of 100,
which was veri�ed to be enough for convergence. The SSKF used the calculated average gain
matrix between time levels 101 through 800 of the EnKF simulation. Both KF varieties used
a noise grid that was four times courser than the actual model grid. These correction schemes
resulted in spatially averaged RMS errors of 0.1616 and 0:1752 m for the EnKF and SSKF,
respectively. These are also substantial improvements over the original MIKE 21 simulation,
but not quite as low as the 0:1356 m obtained using a local weighted spatial regression of
the measured errors. The spatial distribution of RMS error for the EnKF simulation is shown
in Figure 10. The time series of errors and corresponding water levels for point (11,11) are
also shown for the EnKF in Figure 11.
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Figure 11. Time series of (a) observed and predicted errors, and (b) corresponding water levels at
point (11,11) in the combined error model for the correction at current time levels using an ensem-
ble Kalman �lter. The RMSE for this point after correction is 0:1464 m compared with 0:6277 m

in the uncorrected MIKE 21 model.

8. TOTAL WATER VOLUME

In order to gain insight into how the various error correction schemes also a�ected the mass
balance of the system the total water volume (TWV) was calculated for the combined error
models. The volume of water, V , represented by each grid point can be approximated by

Vj; k =�x ·�y · hj; k (7)

The sum of these values throughout the grid can then be used to approximate the TWV in
the system at any time level. This approximation was carried out for the ‘true’ model, as well
as for all of the correction schemes for the testing time series. A portion of these results is
shown in Figure 12, as are the respective di�erences from the ‘true’ model.
All of the correction schemes demonstrate a signi�cant improvement over the uncorrected

MIKE 21 simulation, with the weighted local spatial regression method, again, giving the
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Figure 12. A portion of the testing time series of (a) total water volume, and (b) di�erence from
the ‘true’ volume. The RMS errors for the entire testing duration were found to be 2:288×1010 m3,
3:067×109m3, 4:156×109m3, 1:467×109m3, and 5:225×109m3 for the MIKE 21, EnKF, SSKF, WLSR,

and WLME model results, respectively.

best results. These are consistent with the overall correction errors (see Table III) in that the
schemes with the best error correction in water levels also produced the best correction in total
water volume. These results give evidence, if only empirically, that the corrected models are
indeed also roughly conserving mass, since the TWV values after correction are quite close
to the original ‘true’ values (which are based in part on solving the continuity equation).

9. COMPARISON UNDER SPARSE MEASUREMENT CONDITIONS

To test the performance of the various correction schemes under more sparse measurement
conditions two of the three measurement points were removed (leaving only point C, see
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Figure 13. Spatial distribution of RMS error after the correction of the combined error model
(at current time levels) using a local weighted spatial regression with a single measurement.

The average value of this surface is 0:4017 m.

Figure 1). Simulations using the combined error model were then carried out under this much
thinner coverage of measurement points. Figure 5, again, shows the spatially distributed error
for the uncorrected MIKE 21 simulation.

9.1. Local weighted spatial regression

For this simple example, a local weighted spatial regression of measurements actually defaults
to applying the lone measured error at all other grid points. This seems illogical in that it
neglects obvious spatial variations, though it does clearly demonstrate limitations associated
with this method. Larger model domains that are sparsely populated with measurement points
would essentially result in the same type of behaviour throughout the domain. The spatial
distribution of RMS error after correction is shown in Figure 13, having an average value of
0:4017m. The error at and surrounding the measurement point is still quite low, however, the
error grows rapidly with distance from the measurement point, actually increasing the error at
the northern end of the bay. This is obviously due to the fact that errors from the measurement
point continue to be applied even at points that are too far away to be considered relevant.
Although this technique seems to work well in a model domain with a more dense population
of measurement locations, it breaks down for obvious reasons as the measurements become
more sparsely populated in space. Similar results might also be expected with more complex
geometric con�gurations.
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Figure 14. Spatial distribution of RMS error after the correction of the combined error model
(at current time levels) using a weighted local model ensemble from a single measurement

location. The average value of this surface is 0:3681 m.

9.2. Weighted local model ensemble

Next, a weighted local model ensemble was applied to correct errors at the current time levels.
For this simple example with only one measurement location this technique defaults to the
application of the lone local model at all other grid points. The con�guration used for this
local model is the same as in Table II (for measurement point C). The spatial distribution of
RMS error for this simulation is shown in Figure 14, having an average value of 0:3681 m.
The corrections throughout the domain are spatially more consistent than in the previous sub-
section, as they are predicted based on system dynamics alone. Because the dynamics are
generally related throughout the domain, the predicted error levels are allowed to vary at each
grid point depending upon where it happens to be in its respective dynamic cycle.

9.3. Kalman �ltering

For comparison the EnKF and SSKF were also employed to correct the combined errors using
only measurement point C, resulting in spatially averaged RMS errors of 0.2614 and 0:2385m,
respectively. These are signi�cantly lower than the values of 0.4017 and 0:3681m obtained in
the previous two sub-sections. The spatial distribution for the SSKF simulation is shown in
Figure 15. This demonstrates a clear superiority of the KF methods when faced with sparse
measurements.
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Figure 15. Spatial distribution of RMS error after the correction of the combined error
model (at current time levels) using a steady state Kalman �lter with a single measurement.

The average value of this surface is 0:2385 m.

10. INTERMEDIATE SUMMARY AND STEPS TO FOLLOW

A summary of the spatially averaged RMS errors for the tests performed for the correction of
errors at current time levels (using all three measurement locations) is provided in Table III.
Clearly, all of the correction schemes were able to signi�cantly improve the uncorrected MIKE
21 results.
Of the applied correction methods, the weighted local model ensemble consistently pro-

duced inferior results when compared to the other techniques. One reason is its inability to
signi�cantly correct wind-induced errors. This is due to the fact that these wind-induced errors
are largely independent of the underlying tidal dynamics, thus leaving no clear input–output
relationship for the LM forecasts. It therefore becomes di�cult to obtain the same level of
correction as observed with the other techniques, since the actual measurements are not in
any way incorporated into the updating.
The Kalman �lter type schemes provided the best results (though usually marginally) for all

three tests where the errors were introduced individually. The local weighted spatial regression
of measurements provided the best results for the correction of the combined error, which
is probably the most realistic case. In general, however, the results between these methods
are quite similar, and their di�erences would likely be considered largely insigni�cant. Under
sparse measurement conditions (see Section 9), however, a signi�cant shortcoming in the
LWSR methodology becomes very apparent in that it is unable to recognize proper spatial
regions for updating based on a given measurement.
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Table IV. Summary of embedding parameters used for
forecasting errors at the measurement locations. The fore-
casts were made using a uniformly weighted local av-
eraging (degree zero) model with both water surface

elevations and errors as inputs.

Measurement point k �

A 7 [0 1 6 8 18 19]
B 8 [0 1 4 17 21 22]
C 7 [0 1 2 10 19 24]

Therefore, based on these results it does not appear that either of the introduced method-
ologies for re-distributing error measurements throughout a model domain are capable of
replacing more standard Kalman �ltering. Results using these alternate methods will continue
to be displayed for comparison, however. Also noteworthy is the relatively good performance
of the SSKF when compared to the much more computationally expensive EnKF. This would
not be expected to hold in models having strongly non-linear dynamics, but in this simple
example the results are quite impressive given the relative di�erence in computational demand
(see Table I).

11. ASSIMILATION AT FUTURE TIME LEVELS

As previously mentioned, the problem with conventional data assimilation from a forecasting
perspective is that the updated initial conditions quickly become washed-out. Thus, after a
certain forecast horizon the predictions are no better than if made using an initially uncorrected
model. This section provides results obtained at future time levels through the assimilating of
error forecasts (made using local models, see Section 2). The subsequent assimilation methods
used are, again, described in Section 4. For the KF and LWSR schemes this corresponds to
a re-distribution of error forecasts, while for the WLME a forecast horizon greater than unity
is used. All forecasts are made with the assumption of perfect knowledge of the incorrect
boundary and wind-forcing conditions.

11.1. Local model con�gurations

To assimilate model error forecasts it is once again necessary to optimize the local model
con�gurations. This was done previously for a forecast horizon, T , of one time step for the
combined errors (see Table II). For the purposes in this section, however, a forecast much
further into the future is desired. Therefore, the local models were again optimized with a GA
as before, but this time for a forecast horizon equal to 16 time steps (i.e. 4 h). The resulting
optimal con�gurations for each LM are shown in Table IV. Because the time series of errors
are actually available at the measurement points these were also included as potential model
inputs as it is generally an advantage to forecast using previously measured values from the
output time series. The resulting optimal local models used both the time series of errors as
well as water levels for inputs.
Actually, an optimal embedding could be constructed for each desired forecast horizon. This

would, however, require a nearest neighbour search at each measurement location for each
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Figure 16. Error forecasting skill at measurement points A, B, and C for the testing duration.

lead-time. In the present example a single embedding was used for all forecast horizons, thus
requiring nearest neighbours to be found only once per location for each series of forecasts.
The forecast skill for the errors at all three measurement points (based on their own data)

can be seen in Figure 16 for a range of forecast horizons up to 24 h. A relative increase in
error can be seen at 6-h intervals, which correspond to the highs and lows of the tidal cycle.
The increase in error for all three local models is roughly linear with the forecast horizon,
which is not surprising as these are not chaotic time series.

11.2. Local weighted spatial regression of forecasts

After determining the local model con�gurations, the error forecasts were assimilated as before
using a LWSR. The spatial distribution of RMS error for a forecast horizon of 12 h (i.e. 48
time steps) is shown in Figure 17. The spatially averaged RMSE of 0:2973 m is still less
than half that of the uncorrected MIKE 21 simulation, which, again, had an RMS error of
0:6256 m. This is quite remarkable since the updated initial conditions from a conventional
Kalman �ltering type scheme would likely be completely washed-out by this time. There are
still noticeable areas of low error surrounding the measurement locations, but these are much
less apparent than before (compare with Figure 6).
The time series of errors and corresponding water surface elevations are shown for point

(11,11) in Figure 18, again for a forecast horizon of 12h. In general, the corrected time series
are much better than the uncorrected MIKE 21 model, though there are portions where the
error is actually increased. The phase error is essentially removed, however, there seems to
be more di�culty in accurately correcting amplitude error this far in advance. This di�culty
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Figure 17. Spatial distribution of RMS error after the correction of the combined
error model (at a forecast horizon of 12 h) using a local weighted spatial regression.

The average value of this surface is 0:2973 m.

would almost certainly lessen if more training data were made available to create a more
densely populated phase space. The remaining error at this particular location is still less than
half that of the uncorrected time series, which is quite impressive given the extended forecast
horizon.

11.3. Weighted local model ensemble

A WLME was also used to forecast the errors at every grid point. For these tests the local
model con�gurations from Table IV were used (using only water surface elevations as model
inputs). The spatial distribution of errors for a forecast horizon of 12h is shown in Figure 19,
having a spatially averaged value of 0:3291 m. The time series of errors and corresponding
water surface elevations for point (11,11) are also shown in Figure 20. The correction at this
particular point is, again, a signi�cant improvement over the uncorrected MIKE 21 simulation.
In fact, it is even better than was seen in Figure 18, though this is certainly not the trend
throughout the entire model domain.

11.4. Hybrid approach: KF assimilation of LM forecasts

The �nal method presented in this study is the hybrid type model described in Section 4.4,
which uses a Kalman �lter to assimilate local model forecasts. This hybrid-type may be
more theoretically sound and robust than is a simple local weighted spatial regression of
measurements or forecasts. From Table III, the SSKF also provides a good approximation of
the much more computationally expensive EnKF (at least in this model), and therefore was
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Figure 18. Time series of (a) observed and predicted errors, and (b) corresponding water levels at
point (11,11) for corrections in the combined error model (for a forecast horizon of 12 h) using a
local weighted spatial regression. The RMSE for this point after correction is 0:2785m compared with

0:6277 m in the uncorrected MIKE 21 model.

used for the assimilation step in this work. In reality any KF variety could be applied in
essentially the same manner.
The spatial distribution of RMS error for a forecast horizon of 12 h is shown in Figure 21,

having an average value of 0:2709m. The time series of errors and corresponding water levels
for point (11,11) are likewise shown in Figure 22 (also for a forecast horizon of 12 h). For
this extended forecast horizon this method produced the lowest spatially averaged error of the
three correction techniques.

11.5. Summary

A summary of the resulting spatially averaged RMS errors for the various methods of error
forecasting applied in this work is shown in Figure 23 for forecast horizons up to 24 h (i.e.
96 time steps). For comparison, results using the EnKF with various updating intervals were
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Figure 19. Spatial distribution of RMS error after the correction of the combined er-
ror model (at a forecast horizon of 12 h) using a weighted local model ensemble.

The average value of this surface is 0:3291 m.

Table V. Spatially averaged errors using the EnKF with various updating intervals. These er-
rors were then used to estimate the deterioration of updated initial conditions under the con-
ventional methodology (sample calculations: 0:1772 m=(2 × 0:1694 m − 1 × 0:1616 m)=(2 − 1);

0:1771 m=((95− 1) ∗ 0:1772 m + 1 × (0:6256 m × 0:1772 m=0:6512 m))=95).

Updating Time MAE RMSE Approximate EnKF forecasts
interval (h) (m) (m)

T Time (h) RMSE (m) Adj. RMSE (m)

1 0.25 0.1325 0.1616 0 0 0.1616 0.1616
2 0.5 0.1394 0.1694 1 0.25 0.1772 0.1771
4 1 0.1527 0.1881 3 0.75 0.2068 0.2065
8 2 0.1918 0.2430 7 1.75 0.2979 0.2970
16 4 0.2706 0.3586 15 3.75 0.4742 0.4713
32 8 0.3893 0.4837 31 7.75 0.6088 0.6010
48 12 0.4543 0.5588 47 11.75 0.6339 0.6215
96 24 0.5023 0.6050 95 23.75 0.6512 0.6256

used to approximate the deterioration of the updated initial conditions (see Table V) under
the conventional methodology. This is only an approximation, and the values were adjusted
slightly to ensure that they did not actually rise above the level of the uncorrected MIKE 21
simulation. From Figure 23, the updated initial conditions are washed-out almost completely
after 12h (i.e. 48 time steps), after which the forecasts would be essentially the same as if an
initially uncorrected model were used. Similar behaviour would be expected for any updating
procedure that fails to correct at the forecasting time levels. The extended improvement with
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Figure 20. Time series of (a) observed and predicted errors, and (b) corresponding water lev-
els at point (11,11) for corrections in the combined error model (for a forecast horizon of 12 h)
using a weighted local model ensemble. The RMSE for this point after correction is 0:1780 m

compared with 0:6277 m in the uncorrected MIKE 21 model.

the error forecasting methods is quite impressive, with the weighted local model ensemble
again performing worse than the other two approaches for reasons previously explained. The
weighted spatial regression performs the best of the three correction schemes up to a forecast
horizon of about 6 h. Between a T of 6 and 10 h it is essentially equal to the performance of
the hybrid model (i.e. local model forecasts with SSKF assimilation). After 10 h the hybrid
model demonstrates the best performance. The more gentle slope associated with this hybrid
model means that it is more robust against poor predictions than is the simple weighted
spatial regression. Because of this and the other previously mentioned reasons (see again e.g.
Section 10) it is felt that this is the most fundamentally sound of the methods presented in
this paper.
To demonstrate the signi�cance of these improvements, a few examples are discussed here.

Firstly, we will consider an RMSE of 0:3 m. If only the initial conditions of a forecast are
updated (as is conventionally done) this level of error will be exceeded after a forecast horizon
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Figure 21. Spatial distribution of RMS error after the correction of the combined error model (at a
forecast horizon of 12 h) using a steady state Kalman �lter to assimilate local model error forecasts.

The average value of this surface is 0:2709 m.

of only 2 h. By also correcting the model at future time levels through the assimilation of
error forecasts this horizon was extended to 21 h (with the hybrid method) for an extension
of 19 h (i.e. 76 time steps)! Similarly, in a comparison at a forecast horizon of 12 h (where
the updated initial conditions are for all intents and purposes washed-out), the improvement
in error over the uncorrected model goes from essentially zero to a very signi�cant 35 cm!

12. DISCUSSION

The potential implications of these results are very exciting. Clearly, using any of the three
approaches presented in this work allows for the errors throughout a model domain to be
forecast and assimilated far into the future, without requiring a costly updating sequence. In
this example the errors that were forecast and assimilated as far as 24 h ahead of the current
time step still showed signi�cant improvements over the uncorrected MIKE 21 simulation.
Such extended corrections are simply not possible with standard KF updating type schemes
(i.e. those that only update the initial conditions).
Data assimilation is a huge �eld, having applications in meteorology and oceanography, as

well as in engineering. Usually, the ultimate goal in correcting the model is the improvement
at not only the current time step, but also at subsequent forecasting time levels. The problem
with conventional techniques, as has been shown here (see Figure 23), is that the corrected
initial conditions are quickly washed-out. By also assimilating error forecasts the resulting
model predictions can be signi�cantly improved throughout a model far beyond the time it
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Figure 22. Time series of (a) observed and predicted errors, and (b) corresponding water levels at point
(11,11) for corrections in the combined error model (for a forecast horizon of 12h) using a steady state
Kalman �lter to assimilate local model forecasts. The RMSE for this point after correction is 0:2312m

compared with 0:6277 m in the uncorrected MIKE 21 model.

takes for the updated initial conditions to become washed-out, thus demonstrating a clear
advantage over the traditional approach.

13. CONCLUSIONS

Clearly, the assimilation of error forecasts into deterministic models is capable of providing
substantial improvements over the conventional methodology of only correcting the initial
conditions. For the purposes in this paper three di�erent methodologies have been tested:
(1) a local weighted spatial regression; (2) a weighted local model ensemble; and (3) a
hybrid approach using a SSKF to assimilate local model forecasts. The �rst two methods,
though they still demonstrated impressive improvements over the conventional methodology,
were found to have considerable limitations. A simple spatial regression has been shown
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Figure 23. Summary of spatially averaged errors after correction of the combined error model for a
variety of forecast horizons. The baseline uncorrected MIKE 21 error is also shown, as is the estimated

deterioration of updated initial conditions under the conventional methodology.

not to be robust in sparse measurement conditions, and would also likely have di�culty
in dealing with more complex geometric con�gurations. Likewise, the weighted local model
ensemble technique was unable to signi�cantly correct wind-induced errors, while also failing
to incorporate knowledge of the most recent measurements into its predictions. It is unlikely
that methods based on either of these premises would be able to replace existing Kalman
�ltering methods in the general case. A LWSR does, however, seem to work quite well under
a dense enough coverage of measurements. Application of a WLME approach could also be
used to provide signi�cant corrections without requiring any real-time sensing. In general, a
hybrid approach using KF techniques to assimilate local model forecasts appears to be the
most robust scheme.

14. RECOMMENDATION

This work on data assimilation of error forecasts is based on synthetic data from a hydrody-
namic model of a hypothetical bay. The recommendation for continued research in this area
is to apply the methods presented here in a real-world case study, and compare the �ndings
with those in this paper. This work is currently in progress.
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